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APPLICATIONS OF ANALYTIC CONTINUATION TO THE SOLUTION OF 

BOUNDARY VALUE PROBLEMS 

By 

P. R. Garabedian 

A better analysis of special solutions of particular boundary value 

problems is of considerable importance in the theory of partial differential 

equations, especially for equations of fourth order, because very few 

explicit solutions are known in this case.    The present work was motivated 

by interest in the non-linear Navier-Stokes equation 

zzzz z    zzz       ^z    zzz 

governing the steady two-dimensional flow of an incompressible viscous 

fluid, but the results have application In other fields, such as elasticity. 

We develop methods based on analytic continuation which yield for certain 

special plane domains the solution of the basis boundary value problems 

for the equations A<p«qp  and AA^"0.    The methods, which consist either 

in the introduction of independent complex variables z«x+iy and z  -x- iy 

or in a suitable exploitation of the analytic function G(z) such that the 

equation £"G(z) represents the boundary of the domain, are of themselves 

interesting, since they provide formulas for the reflection of solutions 

of these partial differential equations across analytic boundaries.    We are 

thus able, for example, to study the solution of the Oseen equation 

AAH^- kty   near the end of a slit. 

Let P(z,z) be a fixed real analytic function of x and y, and let   <7)(z,z) 

be a real solution of the linear elliptic partial differential equation 
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(1) <D_(z,z) - P(z,z)cp(z,z) 

in a plane domain D, where 

m_ej&        JL.lr-aL._4A-) -2-.lr-_L 4-4-2-) 
Tzi       az3z    '     9z      2^x    x 3y      *    dz     2V 2x    x 2y;      ' 

We denote by A(z,z jt,t ) the Rlenann function of the corresponding hyperbolic 

equation 
2 

(2) -"- - P(2,z*)cp 
9zdz 

* 
;Ln two independent complex variables z and z . In other words, A is, as 

a function of z and z , a solution of (2) which satisfies the boundary 

conditions A(z,t jt,t )«A(t,z jt,t )-l. If we continue the solution 

<f(z,7? of (l) analytically into the domain of complex values of x and y, 

it becomes a solution (p(z,z ) of (2). It is clear by Stokes1 theorem 

that because Cp and A solve (2), the line integral 

(3) /{'it «••*#*•} 
is independent of the path of integration between given limits.    We make use 

of this result to derive a dual pair of useful formulas expressing  CD in 

terms of A. 

The required formulas are 

t * 
U)   <p<t,t*)-9(t,t)-J |ep(z,i) gMy«it.t ) dz + K{ZtZ}tft*) i$U>*} Aijf 

_• 
where the path of integration runs from t   to t in the real plane domain D, 

and [1] 
t » 

(5)     9>(t;t)- ;pU#;t*)A(t*,t*;t,t) •/ A(z,t*;t,t)   ^f^ ^ dz 
t t * * 
WAftVlt.t)   m\*  ' dz*    . 
t 



The first formula is derived by evaluating the integral (3) over a closed 

* _    -* 
circuit consisting of a curve in the real plane z • z from t to t, plus a 

• _   *  * 
curve in the characteristic plane z * t from z -1 to z - t , plus a curve 

*  • -* 
in the characteristic plane z - t from z - t to z -1 , for the integrals in 

the characteristic planes simplify by virtue of the boundary conditions 

satisfied by A. In a similar way, formula (5) follows by evaluation of 

(3) over a closed path made up of the four arcs which ,1oin, respectively, 

* -    *  * -* 
the points z - t and z-t in the plane z-t, the points z-t and z-t 

•  # »  *    * - .-* 
In the plane z • t , the points z-t and z • t in the plane z»t , and 

-* * - / -\ the points z-t and z-t in the plane z-t. Finally, since (^lz,z; 

and A(z,zjt,t) are real, (5) reduces to 

(6) 

z * 

<p(t,t)- f5(t*,t*)A(t*,t*jt,t) + 2 Re 4J  A(z,t*jt,t) * g*1*  dzT. 

t* 

As a first application of the formulas  (4.) and  (6) we consider the 

equation 

(7) &<p-<? 

in the wedge - o< < arg z < oC .    In this case P - l/U and the Rieraann 

function A has the form 

A(z,z*;t,t*) - J[i/^(s-t)(»*-t*)'l 

where J is the Bessel function of order zero. We set t -0 and we take as 

path of integration the ray from the origin to z, whence (4.) yields for 

the solution Cp of (7) 

t 

(8)  <f(t,0)- f(t,t) -\W-fi J£ f(t-z)5']das + Jt//(*-•)•'] -§f dz\   . 
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The remarkable fact about this special case is that 

t 

(9) B.{<p(t,oa- ?(t,t)-fjf ReC-|^dz] + | J^-dlzl] 
o 

sinoe (t-z)z >0 along our path of integration. Thus, along any ray through 

the origin, Re-|9(t,o)u is completely determined by <p(t,t) alone. Further- 

more, for real arguments the Bessel function J is uniformly bounded, 

whereas Ct>(t,t) and its derivatives are required to vanish exponentially at 

infinity for solutions of boundary value problems in a wedge. Therefore, by 

(8), <p(t,0) will be bounded for such solutions. It follows from this 

analysis that the first boundary value problem for (7) in a wedge 

- oL <. arg z <£c*. transforms by (9) into a Dirichlet problem for the harmonic 

function Reva>(t,0)"V in the same wedge. Thus CJ>(t,0) can be found by 

standard procedures and the explicit solution a>(t,t) of (7) assuming the 

given boundary values can be obtained as an integral from the formula 
t 

'j[lAJ(t-z)t'] affi.O) dz  , (10)    cp(t,t)- q>(0,0)J(ilti) + 2 Rs 

based on 16). 

The general formula (6) for solutions (D  of (l) in a domain D gives 

a convenient procedure [6] for continuing a>  analytically across an 

analytic arc of the boundary of D along which a? satisfies, for example, 

the boundary condition (P-0. We write the equation of the analytic arc in 

the form z-G(z), where G(z) is an analytic function. Such a representation 

can always be obtained by solving for z the more usual equation of the arc. 

We suppose, without loss of generality, that the origin is the point on 

the boundary of D near which we wish to make the reflection. In D, near the 

origin, consider the analytic function 
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t 

(11) 0(t) - fA(z,0;t,G(t)) ?<y*t0? dz   . 

o 
From (6) and the boundary condition Cp-C, we obtain along the curve z-G(z) 

the identity 
(  t 

0 - qptt,t) - (p(0,0)A(O,0jt,t) • 2 Re <j  A(z,Ojt,t) ^ ^i'^ dz\ 

- 2 Re|D(t)| -U(t) + U(t) 

Hence the analytic function U(t) can be continued analytically across the 

curve z"-G(z) by the rule 

D(t) - -U(G(t)) 

since when t lies on one side of the curve and sufficiently near the origin, 

the point G(t) lies on the opposite side. We now derive from (ll) the 

integral equation 
t 

(12) U(G(t))*fA(z,Ojt,G(t)) 9ffi'0) dz - 0 

o 
for the determination of the analytic function <p(t,0) across the arc 

z-G(z). This equation is linear and of the Volterra type, so there is 

no difficulty is solving it by successive approximations. Thus the analytic 

continuation of <2>(t,0) is performed, and to obtain the continuaticr/of 

the original solution Qp(t,t) of (l) we have only to apply formula (6) 

again with t - 0. 

The procedure just outlined can readily be extended to the case of 

fourth order elliptic equations. We Illustrate this generalization with 

an application to the important special case of the Oseen equation 

(13) ^At-2A^x 

This equation has a general solution 

* - ex cp+ h , 
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where qp is a solution of (7) and h is a harmonic function. By (10), the 

general solution can be written near the origin in the form 

t 

(U) ^-Re[e(t+t)/2rj[i^^]g'(z)dZ+Ce
(t+t)/2J(i|t|) + f(t)^   , 

o 
where C is an arbitrary constant and f(t) and g(t) are arbitrary analytic 

functions. We suppose that the solution *4* °Z  (13) is defined in a 

region D whose boundary contains the analytic arc z«G(z) passing through 

the origin, and along this arc we assume that the boundary conditions 

(15) ^ - -J* - 0 

are fulfilled, where n denotes the inner normal of the arc. The problem 

is to continue *r analytically across the arc z«G(z), and it is clearly 

sufficient by (14) to perform such a continuation on the analytic functions 

f(t) and g(t). 

We denote by s the arc length along the curve z«G(z), and we verify 

that / 

<16)        "ft ' * "ft " iG'<=)~l/2     • / on aa 

heplacing (15) by 

e'*^- 3(e"x^)/an - 0 

and substituting (H) into the result, we obtain 

(17) Re {jit)l « Re£w(t)} - 0 

along the curve z"G(z), where V and W are the analytic functions defined by 
t     \ \ 

(18) V(t) - fj[i /l|(t-8)G(t7v(»)dz+ 0J(l^tG(t)' ) • f (t)e'(t+G(t))/2 
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(19) *'(t)G'(trl/2 - iG'(tfl/2iV(t) + lCJ'(i lltSS)1) G(tj""G/lt) 

t 
• i fj'a^t-zwt)') G(t)-(t-z)G^)   (z)dz 

J 2*j(t-z)G(t) o ' 

.e-(t^(t))/2[f(t)G0|H+f,(t)]^ 

In D. Therefore these functions can be reflected across z-G(z) by the rule 

V(t) --V(G(t)) , Kt) --W(G(t)) 

It follows then from (18) and (19) that f(t) and g(t) can be continued 

analytically across z-G(z) as solutions of the system of Volterra integral 

equations 

(20) iG-(t)W^G(t))-^(t) + e-(t+G(t))/V(t) + f(t)e-(t+G(t))/2 ^^ 

t 
•if J'UAR^UT) QUMt-z)^^? g/(z)dz 

i 2^(t-z)G(t)' 

1 2<N|tGltT 

(21) |r[V'(G(t)) + il'(G(t))] - .-(t40(t),/if'(tJ-fCt).^*40^^/2 fi^l dt 

dtJ     ion) dt   (four 
Once the solution of (20) and (21) has been obtained by successive approxi- 

mations, the continuation of the stream function T  can be found from the 

expressjm (H). * | I 1 

We can apply the rule just described for reflecting   ^ to the case 

where  ^f is defined in a neighborhood of the origin slit along the positive 

real axis, on which the boundary conditions  (15) are imposed.    Here G(z)" z 
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end it ia found that V and H are regular,  single-valued functions of Aft near 

the origin, whence by (20),  (2l) the same is true for f and g.    Therefore 

T is a regular function of It and *(t , and since vj>    and  ^   EUflt vanish 

at the origin, ws conclude that the skin friction AT   behaves like l/Hx"1 

along the positive real axis [5l. 

Our roothod of reflection is valid for the equation AA4^»  At of 

the vibrating clamped plate, also, and,  indeed, many further, more involved 

applications could be carried out. 

We turn our attention to the simplest fourth order equation,    namely, 

(22) AA^- 0  , 

and we show that the above technique simplifies to such an extent that we are 

led to the explicit solution of specific boundary value problems. The 

general solution of the biharmonio equation (22) has the form 

(23) ^ - Re {zf(z)+ g(zty 

where f and g are arbitrary analytic functions of z. If we substitute this 

formula into the boundary conditions (15) along the arc z-G(z) and take 

(16) into account, we find 

(24) Re{G(z)f(z) + g(z)} - 0 

(25) Re {iG(z)f '(z)G'(z)"l/2 • ig'(z)G'(z)"l/2-if (z)G'(z)l/2| - 0   . 

We define the two analytic functions 

$(z) - G(z)f(z) + g(z) 

${*)  - if{G(z)f'(z) + g/(|i)-f(z)G'U)}dz   j, 

and we note that (24.) and (25) imply 

(26) Re |^(z)\ - Re fo(z)\  - 0 
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Oii  the  curve  a-Gvz./.    "ut also 

f(z) -  [$'(»)+ i$'(z)]/(2G'(z)) 

g(z) - $(«)-[$'(z) + i«J"(»)]Q(»)/(2G'(i)) 

whence the biharmonic function 4* satisfying the boundary conditions (15) 

can be expressed in the form 

(27) + - Re {$(•) • ^ffi  £$,(,) + i <£U) O, 

in terms of the pair of analytic functions Q> and x satisfying the 

equivalent boundary conditions (26). 

As in our earlier studies, the formula (27) gives a rule for continuing 

*T* analytically across an arbitrary analytic arc i~«G(z). Indeed, we have 

only to reflect <^ and St by the usual Schwarz principle, using (26). 

However, in the present situation, the reflection rule is so simple and 

elegant that for certain domains D it can be exploited in order to solve 

explicitly the first boundary value problem for (22). This can be done 

when D is bounded by a simple closed analytic curve z-G(z) such that G(z) 

is 3ingle-valued in D and regular there except for a finite number of poles. 

The functions $ and Q defined by (27) re regular in D except for 

singularities at the poles of G, and a the boundary curve we find 

(28) t«Re£(£>} 

w /ir **-**{*}    • 
Hence the problem of determining a solution of (22) in r with prescribed 

values for T and 9 (>H/3n on the curve bounding D reduces to the problem 

of finding analytic functions Q  and x* with given real parts on the 

boundary of D end with suitable singularities at the poles of G. The 
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solution therefore involves only the determination of a finite number of 

paraTOters associated with the singularities in such a way that <£' + i x' 

vanishes at the zeros of G/.    In particular, if G has only simple poles, 

then ^> has only simple poles and   x'• i$' has only simple poles. 

As an example of this theory, we develop « representation for the 

biharmonic Green's function   P(z,t^) of the exterior of the ellipse 
2-2 2-2 

xch    od + ysh   o4-i.    The result should be compared with the earlier 

solution given by a related method [7,8],    We write the equation of the 

ellipse in the complex form 

(z + z)2ch"2c* - (z- i)2ah2oC - U 

and solve for z as a function of z to obtain 

(30) G(z) - z ch 2cC - // z2-l    sh 2oC 

Denote by p(z,^) the analytic function of z whose real part is the Green's 

function for Laplace's equation in the exterior of the ellipse, with source 

point at z- *Zf.    A fundamental solution of (22) is 

Re{-|z-£|2p(z,«$)^ 

and we must add to this an expression of the type (27), adjusted so that the 

sum satisfies the homogeneous boundary conditions  (15) on the ellipse.    This 

gives on the ellipse 

Re{$} - 0 

Re£P) - Re{if|z-^ |2p'(z,^)dzj 

whence wc have 

(31) <£- A(z2-G(z)2) 

(32) Y1- i Az-$)(G(z)-^)p'(z,^)dz + B(z-G(z))+iC(z+G(z))+Dp(z,oo)   , 
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where  the real parameters A, B, C, D are to be found from the condition 

that ^/ + ij' must vanish at the zeros + ch2p(. of G'(z).    We thus obtain 

for A, B, C, D the equations 

+ 2Ach 2oC± tf>P'(ch 2c*,a>) + i(B+iC) 

- (ch 2oc* $)(l+ $)p/(+eh2a:.r.)        , 

and therefore 

(33) V(z,%) -Re{-|Z-^|2p(z,^)*^ + ^j [£' + i$']} 

with G, $, and $  given by (30), (31), and (32). 

The above result, which is of some interest for the discussion of 

slow viscous flow around an ellipse, simplifies considerably in the limiting 

case when oC - 0 and the ellipse degenerates into a slit from -1 to +1. Here 

we find, in fact, that the biharmonic Green's function is given by 

(34) P(z,^) - Re-[-|z-^|2p(z,^) + iy(z-^)(z-^)p/(z,^)^ 

since G(z)«z. This same formula yields the biharmonic Green's function 

for the exterior of any finite number of slits along the real axis, provided 

that we interpret p to be that analytic function whose real part is the 

harmonic Green's function of the multiply-connected slit domain. 

With our present method we can treat the first boundary value problem 

for (22) in domains bounded by slits along an analytic arc z=G(z). 

However, for the applications it is also desirable to study the behavior of 

biharmonic functions near a point of the boundary where two analytic arcs 

intersect at an arbitrary angle. In order to obtain a first analysis of 

problems of this type, we determine here the biharmonic Green's function 

P(z,^) for an arbitrary crescent domain bounded by two circular arcs. 
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Without loss of generality, we can assume that the two circular arcs 

bounding the crescent intersect at the points 1 and -1.    The conformal 

transformation z"thw   therefore maps the crescent in the z-plane onto an 

infinite strip a<v<b in the w-plane, w - u+ iv.    The general solution 

(23) of (22) can be replaced in the w-plane by an expression 

(35) F(w,w) - (ch w chw)t - Re^f*(w)sh w+g*(w)ch w"y , 

which is easily seen to be the general solution of the transformed 

differential equation 
2       2 

(36) (-^ - l)(-^5 - 1)F - 0 

The Green's function P(z, Xf)  of (22) for a crescent will be related to the 

Green's function G(w,0~) of (36) for the corresponding strip by the identity 

(37) G(w,<r) - lchwl2Uh<rl2r(z,^) 

where Z, • th (T , (T • s + it. We proceed to determine G by the method of 

Fourier transforms, omitting details of a familiar nature [2,U,91. 

We write G(w,(T) as the Fourier transform with respect to 6 of a 

quantity #(v,tj©), which turns out to be the Green'3 function with 

discontinuity at v-t of the ordinary fourth order differential equation 
/ 2 

(38) *-f * (s-262) *-£ + (i6 + 8e2 + e4)ff - 0 
dv4 dv 

in the interval a^v-^b, since equation (36) has constant coefficients. 

Thus we have 
00 

(39) G(*,d") - tr T ^(v>t;e)cose (u-a)d9 

o 
where the symmetric Green's function £f(v,t;©)- (^(t,v;9) is given for 

a^v^t -^b by the lengthy relation 
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(40)        49(92 + 4)Ush2^9-92sin22^)^(v,t;9) 

- (92+4)(9eh(?9sin2^-2 ah^9 cos 2^)[3h9(v-a)3in 2(v-a)sh9(t-b)sin 2(t-b)] 

+ (92+4.)sb^9ain 2 i7sh9(v-a)sin 2(v-a)[9ch9(t-b)sin2(t-b)-2 Bh9(t-b)cos 2(t-b)] 

- sh9(t-b)sin2(t-b)[9ch9(v-a)sin2(v-a)-2 sh9(v-a)cos 2(v-a)]| 

- (9ch09ain2i+2shi9cos 2 0)[9 ch9(v-a)sin 2(v-a)-2sh 9(v-a)cos2(v-a)l- 

•C9ch9(t-b)sin2(t-b)-2sh9(t-b}coa2(t~b)3 , 

in which we have replaced b-a b7 -£. 

The explicit representation of the biharmonic Green's function for a 

crescent given by formulas  (37),   (39), and (4.0) yields as limiting cases the 

solution of the first boundary value problem in a wedge of arbitrary angle 

[9], or in an infinite strip [4.], or in a domain bounded by two tangent circles. 

For the special values am-~TT/U> b-TT/4 the representation reduces to the 

usual one for the unit circle, since the integral (39) can be evaluated in 

closed form when x- TT/2.    Another special case of particular interest is 

that of the semi-circle, for which a = 0, b-TT/4.    We obtain, in general,   / 

a wide variety of explicit examples for the study of the multiple-valued  ' 

character of biharmonic functions near a corner of a curve along which the 

boundary conditions  (15) hold, and consequently we can analyze the viscous 

flow around a corner.    Finally, since equation (36) has  constant coefficients, 

a os solved by means of the Fourier transform in any infinite strip. ix   -__   v» 

and hence we can obtain the solution of the biharmonic problem in domains 

bounded by logarithmic spirals. 
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